वनमेवाह्य परीमा - २०१९

No. of Printed Pages: 4

VRA- 12

2015

यांत्रिक अभियांत्रिकी

MECHANICAL ENGINEERING

निर्धारित समय : तीन घण्टे)

[पूर्णांक : 200

Time allowed: Three Hours]

[Maximum Marks: 200

नोट :

- (i) इस प्रश्न-पत्र में **दो** खण्ड '**अ**' तथा '**य**' हैं । प्रत्येक खण्ड में **चार** प्रश्न हैं । किन्हीं **पाँच** प्रश्नों के उत्तर दीजिए, प्रत्येक खण्ड से कम से कम **दो** प्रश्न अवश्य होने चाहियें ।
- (ii) सभी प्रश्नों के अंक समान हैं।
- (iii) एक प्रश्न के सभी भागों का उत्तर अनिवार्यत: एक साथ दिया जाय ।
- (iv) नॉन-प्रोप्रामेबिल कैलकुलेटर का प्रयोग किया जा सकता है ।

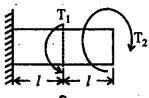
Note:

- (i) This question paper has two sections 'A' and 'B'. Every section has four questions. Attempt any five questions, at least two questions should be from every section.
- (ii) All questions carry equal marks.
- (iii) All the parts of a question must be answered together.
- (iv) Non-programmable calculators can be used.

खण्ड -- 'अ'

SECTION - 'A'

1. (a) (i) गतिपालक चक्र तथा नियंत्रक में अन्तर बताइये ।


10

(ii) क्रांतिक गति तथा व्हलिंग शैफ्ट को समझाइये ।

10

- (b) (i) एक पदार्थ के एक बिन्दु पर मुख्य प्रतिबल 90 N/cm² तनाव तथा 60 N/cm² संपीडन है। अधिक मुख्य प्रतिबल वाले समतल से 30° पर आनत एक समतल पर अभिलम्ब प्रतिबल तथा अपरूपण प्रतिबल विश्लेषिक विधि से ज्ञात कीजिये।
 - (ii) चित्र-1 में दर्शाये शैफ्ट के मुक्त सिरे पर ऐंउन ज्ञात कीजिये ।

10

चित्र-

- (a) (i) Differentiate between fly wheels and governors.
 - (ii) Explain the critical speed and whirling of shafts.
- (b) (i) The principal stresses at a point in a material are 90 N/cm² tension and 60 N/cm² compression. Find analytically the normal and shear stresses on a plane inclined at 30° to the plane of greater principal stress.
 - (ii) Determine the twist at the free end of the shaft shown in Fig. 1.

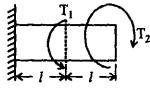


Fig. 1

2. (a) (i) मशीनन की मितव्ययिता की विवेचना कीजिये ।

10

(ii) पराश्रव्य मशीनन का सिद्धान्त दीजिये ।

10

(b) (i) जिगों तथा फिक्सचरों में अन्तर बताइये ।

- 10
- (ii) उच्च चाल इस्पात औजारों की औजार आयु समीकरण $VT^{1/8}=C_1$ तथा टंगस्टन कार्बाइड औज़ारों के लिये $VT^{1/5}=C_2$ है । $24~\mathrm{m/min}$ चाल पर प्रत्येक के लिये आयु $170~\mathrm{min}$ मान लीजिये । उनकी कर्तन आयुओं की तूलना $30~\mathrm{m/min}$ पर कीजिये ।
- (a) (i) Discuss the economics of machining.
 - (ii) Give the principle of ultrasonic machining.
- (b) (i) Differentiate between jigs and fixtures.
 - (ii) The tool life relationship for high speed steel tools is $VT^{1/8} = C_1$ and for tungsten carbide tools $VT^{1/5} = C_2$. Assuming that at a speed of 24 m/min, the tool life was 170 min in each case, compare their cutting lives at 30 m/min.
- 3. ^६(a) (i) ब्रेक इवेन विश्लेषण समझाइये ।

10

(ii) पदार्थ आवश्यकता आयोजन (MRP) को समझाइये ।

- 10
- (b) (i) सिम्प्लेक्स विधि का प्रयोग करते हुये निम्नलिखित समस्या का हल निकालिये :
- 10

अधिकतमीकरण कीजिये
$$Z = 3x_1 + 2x_2$$

() <u>?</u>

शर्ते $x_1 + x_2 \le 4$

$$x_1 - x_2 \le 2$$

$$x_1, x_2 \ge 0$$

(ii) X तथा 'p' चाटों की तुलना कीजिये ।

10

- (a) (i) Explain the break even analysis.
 - (ii) Explain the Material Requirements Planning (MRP).
- (b) (i) Using Simplex method, solve the following problem:

 $\mathbf{Max.} \qquad \mathbf{Z} = 3x_1 + 2x_2$

Subject to

 $x_1 + x_2 \le 4$

 $x_1 - x_2 \le 2$

 $x_1, x_2 \ge 0$

(ii) Compare X and 'p' charts.

4. निम्नलिखित में से किन्हीं चार पर संक्षिप्त टिप्पणियाँ लिखिये :

 $10 \times 4 = 40$

- (i) कम्प्यूटर संगठन
- (ii) समग्र गुणवत्ता प्रबन्धन
- (iii) द्वि-प्रावस्था आरेख
- (iv) कम्प्यूटर संख्यात्मक नियंत्रण
- (v) कार्य मापन
- (vi) प्रोफाइल का निरीक्षण

Write short note on any four of the following:

- (i) Computer organization.
- (ii) Total Quality Management.
- (iii) Binary phase diagram.
- (iv) Computer numerical control.
- (v) Work measurement.
- (vi) Inspection of profile.

खण्ड – 'ब'

SECTION - 'B'

- 5. (a) (i) ऊष्पागितकी की विवृत्त तथा संवृत्त प्रणालियों को परिभाषित करिये । प्रत्येक प्रणाली के दो उदाहरण दीजिये ।
 - (ii) सी.आई. इंजनों में डीज़ल अपस्फोटन समझाइये ।

10

- (b) 500 kPa, 80 °C पर 2 kg वायु एक संवृत्त प्रणाली में एडियाबेटिक तरीके से बढ़ायी जाती है कि उसका आयतन दो गुना हो जाता है और तापमान वातावरण के बराबर हो जाता है, जो 100 kPa, 5 °C है । इस प्रक्रम के लिये उपलब्धता में परिवर्तन तथा अनुत्क्रमणीयता ज्ञात कीजिये । वायु के लिये C_v = 0.718 kJ/kg K, U = C_vT जहाँ C_v स्थिर है तथा p_v = mRT, जहाँ p, kPa में दाब, V m³ में आयतन, m, kg में द्रव्यमान, R एक स्थिरांक = 0.28 > kJ/kg K तथा T, K में तापमान है । 20
- (a) (i) Define open and closed systems in thermodynamics. Give two examples of each system.
 - (ii) Explain the diesel knock in C.I. engines.
- (b) 2 kg of air at 500 kPa, 80 °C expands adiabatically in a closed system until its volume is doubled and its temperature becomes equal to that of the surroundings which is at 100 kPa, 5 °C. For this process determine the change in availability and the irreversibility. For air take C_ν = 0.718 kJ/kg K, U = C_νT where C_ν is constant and p_ν = mRT, where p is pressure in kPa, V Volume in m³, m mass in kg, R a constant equal to 0.28 > kJ/kg K and T, temperature in K.

6.	(a)	(i) आक्टन तथा सिटन रिटगा से आप क्या समझते है ?)
		(ii) एस.आई. इंजन में दहन प्रक्रम को समझाइये।)
	(b)	(i) एस.आई. इंजन में इंजन उत्सारण और नियंत्रण पर एक संक्षिप्त टिप्पणी लिखिये । 10)
	` '	(ii) सी.आई. इंजन के लिये ईंधन अन्त:क्षेपण की वायु अन्त:क्षेपण विधि को समझाइये । इसके लाभ	
		क्या हैं ?)
	(a)	(i) What do you understand with the octane and cetane numbers?	
	(-)	(ii) Explain the combustion process in S.I. engine.	
	(b)	(i) Write a short note on engine emission and control in SI engines.	
	(-)	(ii) Explain the air injection method of fuel injection for C.I. engine. What are	
		its advantages ?	
	•		
7.	(a)	(i) एक समानान्तर प्रवाह ऊष्मा विनिमयक का कार्य समझाइये ।)
		(ii) निम्निलिखित को परिभाषित कीजिये :)
		(1) संतृप्तता कोटि	
		(2) ओसांक तापमान	
		(3) शुष्क बल्ब तापमान	
		(4) आर्द्र बल्ब तापमान	
		(5) साइक्रोमीट्रिक चार्ट	
	(b)	वाष्प संपीडन प्रशीतन निकाय क्या है ? इसके अवयवों को उनके प्रकार्यों सहित बताइये । निकाय का	
	` '	ब्लॉक आरेख भी बनाइए ।)
	(a)	(i) Explain the working of a parallel flow heat exchanger.	-
	• •	(ii) Define the following:	
		(1) Degree of saturation	
		(2) Dew point temperature	
		(3) Dry bulb temperature	
		(4) Wet bulb temperature	
		(5) Psychometric chart	
	(b)	What is a vapour compression refrigeration system? Give its components with	
		their functions. Also draw a block diagram of the system.	
8.	ਰਿਤੀ	निखत में से किन्हीं चार पर संक्षिप्त टिप्पणियाँ लिखिये : 10 × 4 = 40	
0.		संपीडित्र का सिद्धान्त	,
	(i)	विमीय विश्लेषण	
	(ii)	शीतलन जल निकाय	
	• •		
	(iv)	कष्मा संतुलन	
	(v)	पावर प्लान्टो का निरोधी अनुपालन	
	(vi)	रेले रेखाएँ	
		e short notes on any four of the following:	
	(i)	Theory of compressors.	
	(ii)	Dimensional analysis.	
	(iii) (iv)	Cooling water systems. Heat balance.	
	(v)	Preventive maintenance of power plants.	
		Rayleigh lines.	
	\ · •/		